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A FINITE DIFFERENCE METHOD 
FOR SYMMETRIC POSITIVE DIFFERENTIAL EQUATIONS 

JINN-LIANG LIU 

ABSTRACT. A finite difference method is developed for solving symmetric pos- 
itive differential equations in the sense of Friedrichs. The method is applicable 
to partial differential equations of mixed type with more general boundary con- 
ditions. The method is shown to have a convergence rate of O(h1/2), h being 
the size of mesh grid. Some numerical results are presented for a model problem 
of forward-backward heat equations. 

1. INTRODUCTION 

In the theory of partial differential equations there is a fundamental dis- 
tinction between those of elliptic, hyperbolic, and parabolic types. Friedrichs 
[5] developed a theory of symmetric positive linear differential equations in- 
dependent of type. The theory of Friedrichs's systems has been shown to be 
very useful in theoretical analysis for mixed-type problems such as the Tricomi 
problem and forward-backward heat equations. Furthermore, it also gives a 
simple and unified numerical treatment for these problems (see e.g. [1, 7, 9]). 
Otherwise, if a numerical method applies directly to a PDE of mixed type, the 
treatment of the interface on which the PDE changes type is in general very diffi- 
cult to handle. For example, Vanaja and Kellogg [12] used an iterative method 
to solve discrete approximations of a forward-backward heat equation which 
involve three different systems, i.e., forward, backward, and interface finite dif- 
ference systems. The method requires the solution of the equation to be more 
regular than that of the unified method proposed here. The unified method, on 
the other hand, not only requires less regularity for the solution but also applies 
to a more general setting of the problem; by this we mean less restriction on the 
assumption of coefficient functions that cause the equation to change type. 

Several numerical methods have been developed for Friedrichs's systems [7, 
9, 10]. Friedrichs [5] was the first to propose a finite difference procedure for 
the numerical solutions of symmetric positive systems in rectangular regions. 
Chu [4] further studied this method and extended it to curvilinear rectangular 
domains, but the rate of convergence was not established. Katsanis [7] gave 
a finite difference method for the Tricomi problem, using symmetric positive 
systems, which is applicable to any region with piecewise smooth boundaries, 
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and showed that the rate of convergence is O(h 12), where h is the size of 
a regular mesh. However, he imposed on the system an extra constraint that 
the boundary matrix should be positive definite. This appears to be somewhat 
restrictive for the application of Friedrichs's theory. In fact, this work is mo- 
tivated by forward-backward heat equations which do not reduce to symmetric 
positive systems having this property, and we find that the constraint is actually 
not required for our method. We show that for a rectangular domain the rate 
of convergence is also O(h 1/2). The main difference between our method and 
the method of Katsanis is that the approximation in Katsanis's scheme does 
not necessarily go beyond the boundary, whereas our method does. The bound- 
ary condition of the system is handled differently as well. It is shown in [4] 
that there exists a transformation of the dependent variables, coefficient matri- 
ces, the differential equations, and the boundary conditions such that when the 
domain is mapped from a curvilinear rectangle to a rectangle, the symmetric 
positive character of the equation is preserved. We confine our considerations 
to rectangular domains. 

Since the development of the proposed method is primarily motivated by 
forward-backward heat equations, we stress further the main results of both the 
iterative method in [ 12] and our method. For problems in the x-y plane, if the 
solution has continuous derivatives of order 4 in x and order 2 in y, the rate 
of convergence of the discretization error for the iterative method is O(h2 + k), 
where h and k are mesh sizes in x and y, respectively. The iterative process 
may be affected by different h and k and hence by the interface system. Our 
method instead requires the solution to have smoothness of order 3 in x and 
2 in y, and gives an O(h 12) convergence. Since the solution is obtained by 
reducing the original second-order equation into a first-order system, it is essen- 
tially equivalent to a convergence rate of 0(h312), at least in the x-direction if 
the original equation were solved directly for the unknown function. 

2. SYMMETRIC POSITIVE SYSTEMS 

Let Q be a bounded open set in Rm , with a piecewise continuously differen- 
tiable boundary OQ. A point in Rm is denoted by x = (xI , x2, ... , xm) and 
an unknown r-dimensional vector-valued function defined on Q is given by 
u = (u1, U2, ... , Ur). Let ce, a2, ..., Cam be symmetric r x r matrix-valued 
functions, G an r x r matrix-valued function, and f = (fi, f2 , ... , fr) a given 
r-dimensional vector-valued function, all defined on Q. It is assumed that the 
ai are piecewise differentiable. For convenience, let a = (al a2 a...,m), so 
that we can use expressions such as 

m 

V(au)=>j (a' U). 
i Xj 

With this notation we can write the identity 

9 
mi0 

Oa 
' 

E x OX xj E 
aXi 

simply as 

(2.1) V * (au) = (V * a)u + a Vu. 
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A symmetric system of linear differential equations with boundary conditions 
can then be written in the following generic form: 

(2.2) Ku:=a*Vu+V*(au)+Gu=f(x) in Q, 

(2.3) Mu: (,u(x) - ,B(x))u(x) = 0 on a . 

The matrix ,B is defined (almost everywhere) on OQ by B -n- a, where 
n = (nl, ... , nm) is the outer normal on O0. The matrix ,u is defined on 
OQ so that the boundary condition (2.3) is admissible and the operator K is 
positive in the sense of Friedrichs [5], i.e., 

(i) '(,u(x) +,u*(x)) is positive semidefinite on O0, 
(ii) ker(,u - fl) eD ker(,u + fl) = Rr on OQ, and 

(iii) (G + G*) is positive definite in Q. 
The adjoint operators K* and M* of K and M, respectively, are formally 

defined by 

K*v = -ao Vv -V V (av) + G*v, 

M*v = (V* + f8)v. 

Let (u,v) = fQu vdx, and (u,v) =f 0Qu vds. Let Hm(Q), m > 0, be 
the usual, in vector form, Hilbert spaces equipped with the norm 1 The 
following results are given in [5]: 

Lemma 2.1 (First Identity). If K is symmetric positive, then for any u, v E 
HI (0), 

(2.4) (Ku, v) + (Mu, v) = (u, K*v) + (u, M*v). 

Lemma 2.2 (Second Identity). If K is symmetric positive, then for any u C 
HI (0) 

(2.5) (Ku, u) + (Mu, u) - (Gu, u) + (/u, u). 

Let V=Cl(Q)nf{v:M*v=O on O 2}. Weshallsaythat uEL2(Q) isa 
weak solution of problem (2.2), if for all v E V 

(u, K*v) = (f, v). 

The existence of weak solutions of (2.2), (2.3) is guaranteed if M is semi- 
admissible. Uniqueness is insured if we look for solutions in H1(Q). If, in 
addition, M is admissible and a weak solution is continuously differentiable, 
then it must also be a classical solution. It follows from the First Identity (2.4) 
that a classical solution is also a weak solution [5]. 

3. FINITE DIFFERENCE METHOD 

We describe a finite difference approximation of (2.2) and (2.3) for a rect- 
angular domain in the x-y plane. Extension to rectangular domains in higher 
dimensions is immediate. Let Q be the rectangle centered at the origin, with 
boundaries x = x_, x = x+, y = y_, and y = y+ . Let Q be partitioned in 
a square grid of width h; a grid point is denoted by a pair of integers (i, j) 
with (-I - 2, -J - 2) < (i, j) ? (I + 2, J + 2); the step h is selected so that 
I and J are even integers. The grid points with jil = I or ljl = J are called 
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boundary points (including the four corner points); those with I < IiI < I + 2 
or J < I jI < J + 2 are extensions of the domain beyond the boundary and shall 
be called extension points. 

We introduce the shift operators 

Sxu(i, j) = u(i + 1, j), SYu(i, j) = u(i, j + 1), 

S-xu(i, j) = u(i - 1, j), S-Yu(i, j) = u(i) , j- 1). 

We have S2x = SxSx S-2x =_ S-xS-X and similarly for S2Y and S-2y. 
The boundary operators BO and BI are defined such that B?u is the value of 

u on the boundary and BI u is the value of u one row beyond (into extension) 
the boundary. The operator B-I is defined so that B-I u is the value one row 
within (into interior) the boundary, and B2, B-2 etc. are similarly defined. 
(E.g. B1 = SXBO at x = x+, B1 = S-XBO at x = x_, etc.) 

For each interior and boundary point, we define the finite difference operator 
Kh, an approximation to the differential operator K: 

Khu = (Sxa1)S2xu - (S-xal)S-2xu + (Sya2)S2yU - (S-ya2)S-2yU + Gu. 
2h +2h 

The difference equation is written for each even interior point and boundary 
point: 

(3.1) Khu = f. 

To each boundary point, we assign the approximate boundary condition 

(3.2) Mhu = (By)B0u - (B1f,)B2u = 0, 

where B1,f is defined as nxB1al + nyBla2 at each row grid B1, nx and ny 
being well defined for each boundary. Note that, at the corner points, nx and 
ny are not unique but will be well defined if we consider that (3.2) is computed 
piecewise on the boundary, i.e., piece by piece parallel to row B1 . In fact, this 
will give a unique representation of each unknown into the extension in terms 
of the unknown on the boundary including the four corner points. We define 
Bly as 

(3.3) B=B,B+M. 

Clearly, the difference equation and the approximate boundary condition indeed 
approximate the differential equation and the given boundary condition; i.e., if 
u(x, y) is a continuously differentiable function defined in the closed rectangle, 
we see immediately that Khu converges pointwise to Ku, and Mhu converges 
pointwise to Mu, as h tends to 0. The values of the function at the boundary, 
and even in the extension, are all solved for as unknowns. This differs from 
usual finite difference procedures for boundary value problems, where the values 
on the boundary are known data. The finite difference method of Katsanis [7] 
is based on the formulation obtained by applying Green's theorem in any region 
in Q centered at each grid point. We shall see there exists a unique solution of 
(3.1), (3.2). 

We define the inner product and the norm respectively by 

(U, V)h = U v4h2, 
e 
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where Ze indicates summation over all even points (i, j) with Jil < I, ljl < 

J, and Ilullh + (u, u)h/2. These can be interpreted as ordinary Hilbert space 
inner product and norm, if the values of u defined at even grid points are 
interpreted as values of piecewise constant step functions, constant in each 
2h x 2h square centered around each grid point. Let L 2(Q) denote the space 
of these discrete functions. 

Similarly, we define (u, V)h = LB u * v2h, where EB indicates summation 

over all even boundary points with Jil = I or ljl = J, and lUlh (u, u)h/2. 
The interpretation is completely similar. 

From the definitions of 1l * Ilh and I - Ih, we have the inequality 

(3.4) U hh < ;h 12HuHh 

Now, we define the consistent finite difference operator and approximate 
boundary operator for the adjoint operators K* and M*, respectively: 

KZv = (Sxa1)S2xV _ (S-xal)S-2xv (SYa2)S2yv - (S-Ya2)S-2Yv + G*v, Khv-- 2h 2h 
Mh*v = (B1y)*Bov + (B1,B)B2V. 

Let HI be the set of all even interior grid points in Q, and HB the set of 
all even boundary grid points in Q . Let H = HI U HB . With each grid point 

xi E H we identify a 2h x 2h mesh region Pj. If Pj is adjacent to Pk we 
say that xj is connected to Xk . Now define Aj to be the area of Pj, which is 
4h2, and Lj, k to be the length of the line segment between Pj and Pk. We 

denote j, k = Pj nfPk k We use the notation Zk to indicate a sum over points, 
Xk, which are connected to some point, xj. 

We now show the discrete version of (2.4). 

Lemma 3.1 (First Discrete Identity). If v and u are functions defined at even 
grid points, then 

(3.5) (Khu, V)h + (Mhu, V)h = (u, Khv)h + (u, Mhiv)h. 
Proof. At each grid point xj E H, we write 

-ZLi,k2Y,kUk 

1 ((sxl)s2xu _ (S-xal)S-2Xu + (Sya2)S2yU (S-Y 2)S-2yU)7 

where Uk = U(Xk), and y;,k denote, in order, the values of a1I, -a1, a2, and 
-a2 at the centers of Fr k which correspond to the east, west, north, and south 
sides of xj, respectively. Note that if Fj,k is beyond the boundary, we have 

2Y.,k =3j,k. Hence, at Xj E H, 

Aj(Khu)j = Z L kY; kUk + AjGuj. 
k 

Similarly, 

Aj *V)j= L, k (-Y', k)Vk + Aj G*vj. 
k 
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We then have 

(Khu, V)h-(u, Kh*V)h 

=z [zLj,k(Yj,kUk *Vj + Yj,kVk . Uj) + Aj(Guj * vj-G*vj . uj). 

Since YJ k =Yk j, and since a1 and a2 are symmetric, we have, by rear- 
rangemnent, 

ES Lj, kY; ,kVk u = -55 Lj,kVj 'Yj,kUk, 
jk jk 

and we see that all terms cancel with the exception of the boundary terms. 
Therefore, 

(3.6) (Khu,v)h-(u,Kh V)h= L, k (Zj, kUk * Vj + gj, kVk Uj) 
JEB kOIJ 

On the other hand, at each xj E HB, we have 

(Mhu)j = (B1fi + t - 8)j(B0u)j - (B1f8)j(B 2U)j 

= (3j,k + Yj - 8j))Uj - 8jf,kUk, 

and 

(Mh*v)j = (B1/3 + u -8) (Bv)j + (B 3)j(B V)j 

= (8j, k + JJ - 8jf)vj + 8j, kvk, 

where k 0 I. Hence, 

(u, Mh,V)h-(Mhu, V)h=Z Lj, k (F, kUk * vj + g, kVk Vj) 
jEB kOI 

which is the same as the right side of (3.6). Hence (3.5) is proved. O 

Observe that Kh + Kh = G + G* and AMh + Mh* = (B I ) + (B I )* By setting 
v - u in (3.5), we get immediately the discrete version of (2.5). 

Lemma 3.2 (Second Discrete Identity). For functions u defined at even grid 
points, there holds 

(3.7) (Khu, u)h + (Mhu, U)h = (Gu, U)h + ((B'u)u, U)h. 

Consequently, we have: 

Lemma 3.3 (Basic Inequality). For u satisfying the approximate boundary con- 
dition Mhu = 0, there is a (generic) constant C > 0 such that 

IlUflh < CfIKhUflh. 

The existence and uniqueness of the solution of (3.1), (3.2) can be proved as 
follows. We see that the unknowns in (3.1) include those at the boundary and 
in the extension. For unknowns in the extension, we substitute the boundary 
condition (3.2) into (3.1). Note that 

Bl/ = Sxal, B2U = S2xU on x+, 
B1/ = -S-xal, B2U = S-2xu on x_, 
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etc. Hence, by substituting 

(B/l3)B2u = (Bgl)BOu 

into (3.1), we then have a squaie finite system of linear equations with unknowns 
at all grid points Xj E H (not including the points in the extension). The Basic 
Inequality insures uniqueness of the solution of the system of linear equations. 
But since these equations are a square finite system, uniqueness of the solution 
also insures its existence. We summarize: 

Theorem 3.1. The system offinite difference equations (3. 1) and boundary con- 
dition (3.2) possesses a unique solution. 

We now study the error between the approximate solution uh of (3.1), (3.2) 
and the solution u of (2.2), (2.3). 

We may express K in a form slightly different from (2.2), by the use of (2.1). 
That is, 

(3.8) Ku = 2V * (au) - (V * a)u + Gu. 

In order to relate L 2(Q) to the usual L2 (Q) space, we introduce a projection 
rh: C?(Q) -* Lh2(Q) defined by 

(rhu)j = U(Xj), Vxj E H, 

and an injection Ph: L2() -* L2(Q) defined by 

PhUh(X) = (Uh)j, Vx E Pj n Q. 

We immediately have IlPhUh lo < lluh lIh, Vuh E L2(Q). 
We shall need the following lemma which is given in [7]. 

Lemma 3.4. Let g be a function defined on a finite region P c R2, and suppose 
that g satisfies a Lipschitz condition, i.e., there is a constant C > 0 such that 
Ig(x) - g(y)l < Clx -yl for all x, y E P. Then, if A is the area of P and 
lx-xol<h in P,we have 

g(xo) - A g(x) < Ch. 

We now state the convergence properties of the method. 

Theorem 3.2. Suppose that u E C2(Q) is the solution of (2.2), (2.3). Let 
Uh E Lh2() be the unique solution of (3.1), (3.2). Then 

(3.9) lIrhKU - KhrhUllh = 0(h), 

(3.10) IrhMu - Mhrhulh = 0(h). 

Moreover, the discrete error converges at the rate 

(3.11) luh - rhUlIh = 0(h1I2), 

(3.12) Ilphuh - ullo - 0(h112) 

Proof. Using the Second Discrete Identity (3.7), the positive definiteness of G 
and positive semidefiniteness of ,u, we have for some constant C > 0 

lluh - rhUI C[(uh - rhu, Kh(uh - rhU))h + (Uh - rhU, Mh(Uh - rhU))h]. 
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Writing Kh (uh - rhu) = rhf - rhf+ rhKu - Khrh u, using the boundary conditions 
Mhuh = rhMu = 0 on HB and the Cauchy-Schwarz inequality, we have 

I|Uh - rhuh ? C[lUh- rhuljh11Kh(uh - rhU)flh + |Uh - rhU1h1Mh(Uh - rhU)Ih] 

= C[Iuh - rhullhflrhKu -KhrhulIh + Uh - rhUlhIMhrhUlh1- 

We shall show that IIrhKu - Khrhullh = 0(h') and iMhrhulh = 0(h'). Then, 
(3.4), (3.9), and (3.10) imply (3.11). 

From the definition of Il * I h, we have 

IIrhKu - Khrhufl2 = Z(rhKu - Khrhu)24h2. 
e 

We now obtain a suitable bound for IKu(x1) - (Khrhu)jl. By (3.8), 

|Ku(x1) - (Khrhu)jl 

2V * (au) (xJ )-(V * a)u(xj)-+ Lj, k Yi, kuk 

(3.13) < 2V (au)(xj) - ELj, kY, k(Uk + uj) 

+ (V*e)u(xi)- + Z Lj,kYj,kuj 

Consider the first term in the last expression above: 

2V * (au)(xj) - Lj, kYj, k (Uk + Uj) 

2 k' 

< 212 * (eu) (xj) - 2 V * (aXu) 
-I Aj PJAj (3.14) 

+ A 
jk 2(yu-(YU)j,k) 

k j 

A+ | 
1 

(2 (yu) j, k -Yj, k (Uk + Uj))| Aj k' Jk 

Using Lemma 3.4, we have 

(3.15) T2V (au))(Xj) - + J V . (au) = O(h). 

We now examine a Taylor series expansion for yu about the point xj,k = 

(Xi + Xk)/2: 

(3.16) Y(Xj k + tZ)U(X k + tZ) = (YU)j,k + t d (Yu) + 2 
g(V) 

(3.17) Y(Xj,k-tZ)U(Xj k-tZ) = (YU)j,k-t d(Yu)) + 
t 

gg2), 
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where z is a unit vector orthogonal to Xi - Xk, t is a scalar parameter, g(4) - 

(g1(41), g2(42)), g- is the ith component of the vector (d2/dt2)(yu), and cj 
is a point on the straight line between Xi k + (Lj k/2)z and Xj,k - (Lj,k/2)z 
Using (3.16) and (3.17), we obtain the following bound: 

(3.18) YJ yu - (yu)j,k 0(h3). 

Since u E C2, we have 

Uj i= Ujk-hUk+2u(1), Uk =Uj,k + hu k+ U (2), 

where the derivatives are directional derivatives in the direction Xk -Xi. Hence, 
we have 

12uj,k-(uj + Uk)I <Ch2. 

This means that 

(3.19) YjYj,k(2Uj,k (Uj + Uk)) 

< Lj, k It Y, jk - (Uj + Uk)t = 0(h 3). 

Using (3.15), (3.18), and (3.19) in (3.14), we obtain 

(3.20) 2V* (au)(xj) - 4 Lj kYj, k(Uk + Ui) = 0(h). 

We now consider the second term on the right of (3.13): 

(V )U(xj) - Lj, kYj, kuj 

(3.21) (V * a)u(xj) - j (V a)u 

+ j~](V .a)(u -uj) + (YY,kU A j tp( )( A j kJ k ( j 

Again, by Lemma 3.4, we get 

(3.22) (V . a)u(xj) - j(V a)u = 0(h). 

Since u satisfies a Lipschitz condition, Ix - xj < h for all x E Pj, and since 
liv oallo is uniformly bounded in Q, we have 

(3.23) |A (V oz)(u -uj)| < JIV allolu -uji = 0(h). 

Since Yj, k is evaluated at the midpoint of Fj, k, we can use a Taylor series 
analysis, as in deriving equation (3.18), to get 

(3.24) f E (Y Yj, k-)Uj = 0(h). 
Aj k k 
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Combining (3.22), (3.23), and (3.24) in (3.21), we obtain 

(3.25) (7 * )u(xj) - + LLj kYj,kUj = 0(h). 

Substituting (3.20) and (3.25) in (3.13), we obtain 

|Ku(xj) - (Khrhu)j| = 0(h), 
from which (3.9) follows. Next, we prove (3.10). By (3.3), we have 

Mhrhu = B'p!B0rhu - Bl,BB2rhu 

= Bl,uB0rhu - MB0rhu - BlIlB2rhu 

= B1IlB0rhu - B1IlB 2rhu. 

Hence, 

AMhrhU|h < B1fllh B0rhu - B2rhu|h 

i k IJ 'kl 

for all xj E HB, which implies that iMhrhulh 0(h), i.e., that (3.10) holds. 
Finally; we prove (3.12). We have 

flPhUh - Ul0 = lPhrhU -Ph (rhU -Uh) -Ulo 

< lPhrhu - UIIo + flPh(Uh -rhu)lo. 

Since 
flPh(Uh - rhU)11O < flUh - rhUflh, 

and 

flphrhu - ul _ = E J (U_ U)2 = 0(h2), 

where Qj = Pj n Q, we get (3.12). This concludes the proof. El 

Remark. In the proof of this theorem, we did not require ,u + ,u* to be strictly 
positive definite; Katsanis [7] proved the rate of convergence using this con- 
dition. The domain considered in this paper is a rectangle, and the rate of 
convergence we have achieved is 0(h112). If a more complicated domain is 
encountered with piecewise smooth boundary, then Katsanis's finite difference 
scheme can be used. In this case the rate of convergence would still be 0(h1/2); 
however llrhKu - Khrhullh would be 0(h1/2) instead of 0(h). Note that (3.9) 
and (3.10) can be interpreted as the consistency of the operators K and Kh 
and the operators M and Mh, respectively. 

4. A MODEL PROBLEM 

Katsanis's method was motivated primarily by the numerical treatment of 
the Tricomi problem, which reduces to a first-order system with positive definite 
boundary matrix ,u in (2.3). The following model problem shows that the above 
restriction needs to be removed and hence the method given in the previous 
section can be used. We consider the boundary value problem 



A FINITE DIFFERENCE METHOD FOR DIFFERENTIAL EQUATIONS 115 

0(i, y) = 0, vy [0, I], 

(4.2) O (x, O) =0, Vx E [O, 1], 
O (x, 1) =0, VX E [-I, 0], 

where Q = (-1, 1) x (0, 1) and the coefficient u(x, y) changes sign in Q. 
There have been a number of papers addressing this kind of mixed-type heat 
equations (see e.g. [2, 3, 8, 11]). For a discussion of possible applications of 
such equations, we refer to [ 12]. 

We briefly show how the boundary value problem (4.1), (4.2) can be formu- 
lated as a Friedrichs's system. By a change of dependent variables, 

U = (Ul ),U1 = e-Y, U2 = e-'Yx, 

equation (4.1) mnay be written as the symmetric first-order system 

(4.3) Alux + A2uY + Aou =f, 

where 

Al= (-1 o 0 A2= (O O) Ao= (0 ?) 0 =(eA 

Note that (4.3) in general is not positive. To make (4.3) symmetric positive, we 
multiply both sides by a 2 x 2 matrix 

T a bva T=(o a J) 
where a and b are functions of x and y to be specified later. Then the 
forward-backward heat equation (4.1), (4.2) can be expressed in symmetric 
positive form, with properly chosen a, b, and A,, by 

(4.4) Ku=f inQ, 

(4.5) Mu = (/u-,Bl)u= O, V(x5 y) E OQ5 

where 
Ku = a ?Iu + (aIu)x + a2Uy + (a2u)y + Gu, 

It I -ba -a) a2 1 (au 0) 

aO (AOaa b) f (ae-Yf ) 

G= a0-(al)x-(_a2) f I Q (any-bnx)c -anfx) 

~~=~~jq'~~q -a2nanx) 1 q+ + q- -anxA 

2 anx ? 

Here, q? are nonnegative functions defined by (any - bnx)c = q+ - q- . Then 

G+G*_ 1 ( 2{ac - (ao)y + (bc)x bu + ax 
2 2 u b+?ax 2a 

will be positive definite and ,u will be positive semidefinite, and ker(,u - fl) D 
ker(,u+ ?,) - R2 
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We summarize the conditions on the choice of a, b, and A in order to have 
a positive system with admissible boundary condition: 

(I) T is piecewise differentiable, 
(II) q? are nonnegative functions on 9Q, 

(III) G + G* is positive definite. 
The existence and uniqueness of the solution of (4.1), (4.2) follows imme- 

diately by using Friedrichs's results [5]. The reduction of the second-order 
problem to a first-order system not only simplifies the proof of existence and 
uniqueness but also is more convenient for the numerical treatment of the prob- 
lem. Note also that, by Theorem 3.2, the solution of (4.1), (4.2) is required to 
have continuous derivatives of order 3 in x, compared with order 4 for the 
method in [12]. 

We give some examples on the choice of a, b, and A. 

Example 1. The case of o(x, y) = xm with m an odd positive integer has 
been considered in [6]. For this we choose A = 0, a = 1, and b such that 
bxm = x. After a simple calculation, we have 

G+ G*=( x) 

which is positive definite for all x E [-1, 1]. 

Example 2. We now show an example for which a (x, y) = x?+ I . Let A = 0. 1, 
a = 2, and b = 1. After a simple calculation, we have 

G?+ G* = ( 4+ 0.2(x + ? y) x Ib) 

which is again positive definite for all x E [-1, 1], y E [0, 1]. As mentioned 
in the introduction, the iterative method proposed in [12] requires a more re- 
strictive condition on the coefficient function a, namely ay < 0 in Q. 

Example 3. Our numerical experiment was based on the example for which 
c(x, y) = x. This kind of coefficient function appearing in the equation has 
been considered by many authors (see for example [ 1 1, 3]). In our computations 
f is taken to be 

f(x, y) = 2x(x2 - l)y[(y - 1)2 - 4X2 +y(y - 1)] 

- 2y2[(y - 1)2 - 24X2 + 4] Vx > 0, y E [0, 1], 

f(x, y) = 2x(x2 - l)(y - 1)(2y2 - y - 4x2) 

- 2(y - 1)2(y2 - 24x2 + 4) Vx < 0, y E [0, 1]. 

Denote the boundary an by Fl U ... U F6, 

Fl ={(x, y):xE[-1,0], y=0}, 
r2 =J(X, Y): X= 1 y E[O l]}, 

F3 = {(x, y): x E [-1,0], y =l 

F4={(x,y):xE[0, 1], yJ=1}, 

F5={(x,y):x=1, yE[O, 1]}, 
r6= {(X y): x E [0, 1], y = 0}. 
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To formulate (4.1), (4.2) as a symmetric positive system, we choose A = 0.1, 
a = 1, and b = 1. Then 

G (0.1X+2 x) 

We see that (G+ G*) is positive definite in Q. We need to evaluate the matrices 
,u and /3 along all boundaries. A straightforward calculation gives the values 
for ,f,and M shown in Table 4.1. 

TABLE 4.1 

2_I 2/B M 

pi (?x) (x 0) (X0 0 

P3 (-x 0) ( ) (-x 0 

l5 I -1) (-1 -1) I 

r6 (x 0) (x 0) ( x 0) 

Of course, ,u is positive semidefinite. Also, ker(,u - /B) D ker(,u + /3) R 
so that the boundary condition (4.2) is admissible. Theorem 3.2 assures us of 
essentially O(h 1/2) convergence in the L2 norm. However, the results shown 
in Table 4.2 are better, i.e., 0(h). 

TABLE 4.2 

h L? error L2 error L2 rate 

1/4 14.120 4.897 

1/8 6.077 1.706 1.52 

1/12 4.033 1.048 1.20 

1/16 3.464 0.764 1.10 

1/20 3.145 0.602 1.06 

1/24 2.956 0.496 1.05 
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